Author: Bekah Funning - Page 2
Shadow AI Remediation: How to Bring Unapproved AI Tools into Compliance
Shadow AI is the unapproved use of generative AI tools by employees. Learn how to detect it, bring it into compliance, and avoid massive fines under GDPR, HIPAA, and the EU AI Act with practical steps and real-world examples.
Vision-First vs Text-First Pretraining: Which Path Leads to Better Multimodal LLMs?
Text-first and vision-first pretraining are two paths to building multimodal AI. Text-first dominates industry use for its speed and compatibility. Vision-first leads in complex visual tasks but is harder to deploy. The future belongs to hybrids that blend both.
Safety in Multimodal Generative AI: How Content Filters Block Harmful Images and Audio
Multimodal AI can generate images and audio from text-but it also risks producing harmful content. Learn how safety filters work, which providers lead in blocking dangerous outputs, and why hidden attacks in images are the biggest threat today.
Guardrails for Medical and Legal LLMs: How to Prevent Harmful AI Outputs in High-Stakes Fields
LLM guardrails in medical and legal fields prevent harmful AI outputs by blocking inaccurate advice, protecting patient data, and avoiding unauthorized legal guidance. Learn how systems like NeMo Guardrails work, their real-world limits, and why human oversight is still essential.
How Analytics Teams Are Using Generative AI for Natural Language BI and Insight Narratives
Analytics teams are using generative AI to turn natural language questions into instant insights and narrative reports. This shift cuts analysis time, improves collaboration, and empowers non-technical teams-but requires strong data governance and human oversight to avoid errors.
How to Validate a SaaS Idea with Vibe Coding for Under $200
Learn how to validate a SaaS idea using AI-powered vibe coding tools for under $200 in 2025. No coding skills needed. Real examples, real costs, real results.
Code Execution as a Tool for Large Language Model Agents: How AI Systems Run Code to Solve Real Problems
Code execution lets LLM agents run the code they write, turning them from assistants into active problem-solvers. Learn how GitHub Copilot, CodeWhisperer, and Codey use sandboxing to safely execute code-and why security remains the biggest challenge.
Batched Generation in LLM Serving: How Request Scheduling Shapes Output Speed and Quality
Batched generation in LLM serving boosts efficiency by processing multiple requests at once. How those requests are scheduled determines speed, fairness, and cost. Learn how continuous batching, PagedAttention, and smart scheduling impact output performance.
Few-Shot vs Fine-Tuned Generative AI: How Product Teams Should Choose
Product teams need to choose between few-shot learning and fine-tuning for generative AI. This guide breaks down when to use each based on data, cost, complexity, and speed - with real-world examples and clear decision criteria.
Optimizing Attention Patterns for Domain-Specific Large Language Models
Optimizing attention patterns in domain-specific LLMs improves accuracy by teaching models where to focus within data. LoRA and PEFT methods cut costs and boost performance in healthcare, legal, and finance without full retraining.
Architectural Standards for Vibe-Coded Systems: Reference Implementations
Vibe coding accelerates development but introduces serious risks without architectural discipline. Learn the five non-negotiable standards, reference implementations, and governance practices that separate sustainable AI-built systems from costly failures.
Supply Chain ROI Using Generative AI: Boost Forecast Accuracy and Inventory Turns
Generative AI is transforming supply chains by boosting forecast accuracy by up to 25% and increasing inventory turns through real-time, scenario-based planning. Companies are seeing 200-400% ROI by cutting excess stock and reducing stockouts.